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Preface

This primer, starting with a platform of school mathematics, treats quantum
mechanics “properly”. You will calculate deep and mysterious effects for
yourself. It is decidedly not a layman’s account that describes quantum
mechanical phenomena qualitatively, explaining them by analogy where
all attempts at analogy must fail. Nor is it an exhaustive textbook; rather
this brief student guide explains the fundamental principles of quantum
mechanics by solving phenomena such as how quantum particles penetrate
classically forbidden regions of space, how particle motion is quantised,
how particles interfere as waves, and many other completely non-intuitive
effects that underpin the quantum world. The mathematics needed is mostly
covered in the AS (penultimate) year at school. The quantum mechanics
you will see may look formidable, but it is all accessible with your existing
skills and with practice.

Chapters 1–3 require differentiation, integration, trigonometry and the
solution of two types of differential equations met at school. The only
special function that arises is the exponential, which is also at the core of
school mathematics. We review this material. In these chapters we cover
quantisation, confinement to potential wells, penetration into forbidden
regions, localisation energy, atoms, relativistic pair production, and the
fundamental lengths of physics. Exercises appear throughout the notes. It is
vital to solve them as you proceed. They will make physics an active subject
for you, rather than the passive knowledge gained from popular science
books. Such problem solving will transform your fluency and competence
in all of the mathematics and physics you study at school and the first years
at university. The gained confidence in mathematics will underpin further
studies in any science and engineering; in any event, mathematics is the
natural language of physics.

Chapter 4 needs complex numbers. It introduces the imaginary number
i =

√
−1, something often done in the last year at school. Armed with

i, you will see that quantum mechanics is essentially complex, that is, it
involves both real and imaginary numbers. Waves, so central to quantum
mechanics, also require recalling. We shall then deal with free particles
and their currents, reflection from and penetration of steps and barriers,
flow of electrons along nano-wires and related problems. Calculating these
phenomena precisely will consolidate your feeling for i, and for the complex
exponentials that arise, or introduce you first to the ideas and practice in
advance, if you are reading them a few months early. Finally, Chapter 5
introduces partial derivatives which are not generally done at school, but
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which are central to the whole of physics. They are a modest generalisation
of ordinary derivatives to many variables. Chapter 5 opens the way to
quantum dynamics and to quantum problems in higher dimensions. We
revisit quantum dots and nano wires more quantitatively. Chapters 4 and
5 are more advanced and will take you well into a second-year university
quantum mechanics course. They may seem challenging at first: Physics
is an intellectually deep and difficult subject, wherein rests its attraction to
ambitious students.

Physics also is a linear subject; you will need the building blocks of
mechanics and mathematics to advance to quantum mechanics, statistical
mechanics, electromagnetism, fluid mechanics, relativity, high energy phys-
ics and cosmology. This book takes serious steps along this path of univer-
sity physics. Towards the end of school, you already have the techniques
needed to start this journey; their practice here will help you in much of your
higher mathematics and physics. We hope you enjoy a concluding exercise,
quantising the string — a first step towards quantum electrodynamics.

Mark Warner & Anson Cheung
Cavendish Laboratory, University of Cambridge.
June, 2012

Preface to the second edition, and to its first & second reprintings

We have corrected typographical and also some consequent errors, and
thank the several readers who have pointed these out. Readers should
consult the Primer’s website for errata and for additional materials that are
appearing. Many exercises have been added throughout this new edition,
and also to its first & to its second reprintings.
Now very extensive parallel resources exist on Isaac Physics – mathematics,
mechanics, waves, and additional problem sets that prepare a reader for the
exercises in this Primer.
Also, all problems in this Primer without solutions are being presented on
Isaac Physics which will check student solutions and provide hints and
feedback. See Teaching resources on page iv.

MW & ACHC, March, 2013, 2014 & 2017
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Teaching resources

This primer grew from lecture notes for the Senior Physics Challenge1 (SPC),
a schools physics development project of the Cavendish Laboratory, Uni-
versity of Cambridge. It is for school and university students alike: Chapter
1 can be seen as a resource of problems and as an assembly of skills needed
for Oxbridge entry tests and interviews2. The Primer’s preparing for admis-
sions using university level quantum mechanics is not accidental — fluency
and confidence in its techniques is needed for continuing study. Practice
will be required for the mastery of chapter 1, but the material is not ad-
vanced. The skills acquired are then used in the remainder of the book and
in all higher physics. Chapters 2 and 3 offer further practice for fluency
while exploring the wonders of quantum mechanics. Chapters 2–5 are core
to the two years of quantum mechanics in Cambridge.

Solutions: Questions in the Primer where solutions are not given, are being
presented on Isaac Physics at isaacphysics.org/qmpwhere you can enter
your own answers for checking, and where hints will be available.

Chapter 1 is freely downloadable1,3.

Isaac Physics4 develops problem solving skills within the school core phys-
ics curriculum, in particular in mechanics, waves and electromagnetism,
and also in relevant maths. See also Isaac Chemistry5. The Projects’ OPAL6

is an easy (and free) way to access and practise further material.

The Periphyseos Press7 derives its name from Greek

“peri” = “about, concerning”, and “physeos” = “(of)
nature” — the same root as physics itself. The Press makes
texts on natural sciences easily and cheaply available. See
other related books from the Press7. The crocodile ( c©
M.J. Rutter), commissioned for the Cavendish Laboratory
by the great Russian physicist Kapitza, is thought to refer
to Lord Rutherford, the then Cavendish Professor.

1www-spc.phy.cam.ac.uk
2Differential equations are typically not required.
3www.cavendish-quantum.org.uk
4isaacphysics.org
5isaacchemistry.org
6OPAL = Open Platform for Active Learning.
7www.periphyseos.org.uk
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Mathematical notation; Physical quantities

Greek symbols with a few capital forms (alphabetical order
is left to right, then top to bottom):

α alpha β beta γ Γ gamma δ ∆ delta ǫ epsilon
ζ zeta η eta θ Θ theta ι iota κ kappa
λ lambda µ mu ν nu ξ Ξ xi o omicron
π Π pi ρ rho σ Σ sigma τ tau υ Υ upsilon
φ Φ phi χ chi ψ Ψ psi ω Ω omega ∇ nabla

Miscellaneous symbols and notation:

For (real) numbers a and b with a < b, the open interval (a, b) is the set of
(real) numbers satisfying a < x < b. The corresponding closed interval is
denoted [a, b], that is, a ≤ x ≤ b.

∈means “in” or “belonging to”, for example, the values of x ∈ (a, b).

∼ means “of the general order of” and “having the functional dependence
of”, for instance f (x, y) ∼ x sin(y).

∝ means “proportional to” f (x, y) ∝ x in the above example (there is more
behaviour not necessarily displayed in a ∝ relation).

〈(. . . )〉means the average of the quantity (. . . ); see Section 1.2.

∂/∂x means the partial derivative (of a function) with respect to x, other
independent variables being held constant; see Section 5.1.

|. . .| means “the absolute value of”. For complex numbers, it is more usual
to say “modulus of”.

Physical quantities:

Constant Symbol Magnitude Unit

Planck’s constant/2π ~ 1.05× 10−34 J s

Charge on electron e 1.6 × 10−19 C

Mass of electron me 9.11× 10−31 kg

Mass of proton mp 1.67× 10−27 kg

Speed of light c 3.00× 108 m s−1

Bohr radius aB = 4πǫ0~
2/(mee2) 53.0× 10−12 m

Permittivity free space ǫ0 8.85× 10−12 F m−1
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Chapter

1
Preliminaries — some

underlying quantum ideas

and mathematical tools

1.1 Moving from classical to quantum

Wavefunctions, probability, uncertainty, wave–particle duality, measurement

Quantum mechanics describes phenomena from the subatomic to the
macroscopic, where it reduces to Newtonian mechanics. However, quantum
mechanics is constructed on the basis of mathematical and physical ideas
different to those of Newton. We shall gradually introduce the ideas of
quantum mechanics, largely by example and calculation and, in Chapter 4
of this primer, reconcile them with each other and with the mathematical
techniques thus far employed. Initially, we deal with uncertainty and its
dynamical consequences, and introduce the idea that a quantum mechan-
ical system can be described in its entirety by a wavefunction. We shall also
re-familiarise ourselves with the necessary mathematical tools. Our treat-
ment starts in Chapter 2 with the Schrödinger equation and with illustrative
calculations of the properties of simple potentials. In Chapter 3, we deal
with more advanced potentials and penetration of quantum particles into
classically forbidden regions. Later we introduce the momentum operator,
free particle states, expectation values and dynamics. We remain within
the Schrödinger “wave mechanics” approach of differential equations and
wavefunctions, rather than adopting operators and abstract spaces.

1
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Quantum mechanics and probability in 1-D

P x( )

xx x+ xd

| |ψ( )x 2

Figure 1.1: A quantum
probability density
P(x).

A quantum mechanical system, for instance a
single particle such as an electron, can be com-
pletely described by a wavefunction. We call
this function ψ(x), which is a function of po-
sition x along one dimension. Later we treat
higher dimensions and time. It is denoted by
the Greek letter “psi”, which is pronounced as
in the word “psychology”. ψ has the interpret-
ation of, when squared, giving the probability
density P(x) of finding the particle at the posi-
tion x; see Fig. 1.1. Density in this case means

“the probability per unit length”, that is, we multiply by a short length dx
to get the probability P(x)dx that the particle is in the interval x to x + dx.
As always the total probability, here

∫

P(x)dx, must be 1. Most of this book
is concerned with real wavefunctions and we have in effect P(x) = ψ2(x).
However quantum mechanics is an intrinsically complex subject, that is, its
quantities in general involve both the usual real numbers and imaginary
numbers. Chapters 4 and 5 address quantum mechanical phenomena that
need i =

√
−1, whereupon the probability becomes P(x) = |ψ(x)|2, where |. . .|

means “the absolute value of”. For complex numbers, it is more usual to
say “modulus of”. To be unambiguous we shall write |ψ(x)|2, though the
simple square is mostly all we mean.

Uncertainty in quantum mechanics

Knowing the wavefunction (the aim of much of this book) evidently only
tells us the probability of finding the particle at a position x. To this extent
quantum mechanics is not certain — we can only say that the outcome
of many measurements of position would be distributed as P(x) as in, for
example, Fig. 1.1. We shall see, however, at the end that ψ(x) evolves
deterministically in time. We shall also encounter the celebrated Heisenberg
uncertainty principle:

∆x.∆p ≥ 1
2~ , (1.1)

where ∆x denotes the standard deviation (uncertainty) of x, and equival-
ently ∆p for the momentum p in the x-direction. The quantity ~ is Planck’s
constant divided by 2π and is one of the fundamental constants of nature:
~ = 1.05 × 10−34 J s. Rearranging gives us ∆p ≥ 1

2~/∆x, an inverse relation
which says that as the uncertainty in position becomes small (∆x→ 0), then
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the uncertainty in momentum, ∆p, gets very large. Speaking loosely, if we
confine a quantum particle in space it moves about violently. We cannot
know both spatial and motional information at the same time beyond a
certain limit.

There is another important consequence of uncertainty. For wavefunc-
tions with small average momentum 〈p〉, ∆p is a rough measure of the
magnitude of the momentum p of the particle1. Given that p = mv, with m
the mass and v the speed, and that the kinetic energy is T = 1

2 mv2 = p2/2m,
then

T ≥ ~
2

2m

1
(∆x)2

, (1.2)

where in this qualitative discussion we discard the 1
2 in Eq. (1.1). As we

confine a particle, its energy rises. This “kinetic energy of confinement”, as
it is known, gives rise, for instance, to atomic structure when the confining
agent is electromagnetic attraction and to relativistic particle/anti-particle
pair production when the energy scale of T is ≥ 2mc2, that is, more than
twice the Einsteinian rest mass energy equivalent.

Measurement and wave–particle duality in quantum mechanics

Quantum mechanical particles having a probability P(x) of being found at x,
means that the outcomes of many measurements are distributed in this way.
Any given measurement has a definite result that localises the particle to
the particular position in question. We say that the wavefunction collapses
on measurement. Knowing the position exactly removes any knowledge
we might have had about the momentum, as we have seen above. In
quantum mechanics physical variables appear in conjugate pairs, in fact the
combinations that appear together in the uncertainty principle. Position and
momentum are a basic pair, of which we cannot be simultaneously certain.
Another pair we meet is time2 and energy. Measurement of one gives a
definite result and renders the other uncertain. Notice that momentum is
the fundamental quantity, not velocity.

It will turn out that the wavefunction ψwill indeed describe waves, and
thus also the fundamentally wave-like phenomena such as diffraction and

1Consider for instance a particle where the momentum takes the values +p or −p. So
〈p〉 = 0. The mean square of the momentum is clearly p2, and the root mean square, that is,
the standard deviation, ∆p = p simply. If p takes a spread of values, then ∆p is not so precisely
related to any of the individual p values, but it still gives an idea of the typical size of the
momentum.

2Time is special as it is not a true dynamical variable.
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interference that quantum mechanical particles exhibit. For electrons the
appropriate “slits” leading to diffraction and then interference are actually
the atoms or molecules in a crystal. They have a characteristic spacing
matched to the wavelength of electrons of modest energy. A probability P(x)
of finding diffracted particles, for instance, on a plane behind a crystal is
reminiscent of the interference patterns developed by light behind a screen
with slits. However the detection of a particle falling on this plane will
localise it to the specific point of detection — particles are not individually
smeared out once measured. Thus a wave-like aspect is required to get a
P(x) characteristic of interference, and a particle-like result is observed in
individual measurements; this is the celebrated wave–particle duality. In
Chapter 4 we show pictures of particles landing on a screen, but distributed
as if they were waves!

Figure 1.2: G.P. Thomson — Nobel Prize (1937; with Davisson) for
diffraction of electrons as quantum mechanical waves, and J.J. Thom-
son — Nobel Prize (1906) for work “on conduction of electricity by
gases”, middle row, 2nd and 4th from left respectively. In this class
photo of Cavendish Laboratory research students in 1920 there are
four other Nobel prize winners to be identified — see this book’s
web site for answers.

The electron was discovered as a fundamental particle by J.J. Thomson
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using apparatus reminiscent of the cathode ray tube as in an old fashioned
TV. His son, G.P. Thomson, a generation later discovered the electron as
a wave using diffraction (through celluloid); see Fig. 1.2. Both the father
and son separately received Nobel Prizes in physics for discovering the
opposite of each other! J.J. was Cavendish Professor in Cambridge (the
supervisor and predecessor of Rutherford), and was Master of Trinity Col-
lege, Cambridge. G.P. made his Nobel discovery in Aberdeen, did further
fundamental work at Imperial College, and was Master of Corpus Christi
College, Cambridge.

Potentials, potential energies and forces

Unlike the standard treatments of classical mechanics in terms of forces,
quantum mechanics deals more naturally with energies. In particular, the
role of a force is replaced by its potential energy. Forces due to fields between
particles, charges etc., or for instance those exerted by a spring, do work
when the particles or charges move, or the spring changes length. The
energy stored in the field or spring is potential energy V(x), a function of
separation, extension, etc. x. Movement of the point of application of the
force, f , against its direction by −dx gives an increase in the stored energy
dV = − f dx (“force times distance”), that is, force is given by f = −dV/dx.
Note the − sign. Associated with a field is normally a potential3, U(x) say,
that may be a function of position. For instance associated with a charge
Q2 is a Coulomb potential with the value U(x) = Q2/(4πǫ0x) a distance x

away from Q2. Another charge Q1 feels this potential and as a result has
a potential energy V(x) = Q1U(x). We can, using the previous result for
f , calculate the force felt by Q1 from Q2; see Ex. 1.1 below. One speaks of
Q1 being at a potential U(x) when at x. In quantum mechanics potential
energy is generally denoted by V(x) and is loosely referred to simply as
potential. We follow these two conventions — the meaning is generally
clear, especially if one is consistent with the notation.

Three most well-known potentials, giving rise to potential energies V(x),
are

V(x) = +
Q1Q2

4πǫ0x
(Coulomb/electric)

= −Gm1m2

x
(gravitation)

= + 1
2 qx2. (harmonic)

3Fields with an associated potential are known as conservative.
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The second gives the gravitational attractive force between two masses m1

and m2, the masses being a distance x apart. The third potential gives
the harmonic potential energy leading to a retractive force −qx when, for
instance, a spring is stretched by x away from its natural length. The
constants that determine the energy scale, ǫ0, G and q are the permittivity of
free space, the gravitational constant and the spring constant, respectively.

A potential with an attractive region can confine particles in its vicinity
if they do not have sufficient energy to free themselves. Such particles
are often referred to as being in a “bound state”, and the potential energy
landscape known as a “potential well”. We shall explore quantum motion
and energies in potentials of various shapes.

It is important to think about and solve the problems posed in the text.
Mostly they will have at least some hint to their solution. The problems in
part illustrate the principles under discussion. But physics and maths are
subjects only really understood when one can “do”. Problems are the only
route to this understanding, and also give fluency in the core (mathematical)
skills of physics. So repeat for yourself even the problems where complete
or partial solutions have been given.

Exercise 1.1: Derive from the electric, gravitational and harmonic potentials
their force laws. Explain the sign of the forces — is it what you expect? Take
care over the definition of the zero of potential. Does the position where the
potential is zero matter?

Because quantum mechanics deals with energies, rather than forces, we
now explore the shift from using forces to potentials in analysing dynamics
problems. For instance, to calculate the change in speed of a particle, you
might have considered a force-displacement curve. This is a diagram which
tells you what forces are acting as a function of the position of the particle.
In fact, one would need to know the area under the curve, which amounts to
the change of energy of the particle (from potential energy to kinetic energy
or vice versa). We can avoid having to know such detail by simply using
the potential energy graph. The following examples illustrate these ideas.

Exercise 1.2: Consider a particle of mass m passing a potential well of width
a, as shown in Fig. 1.3. The particle has total energy E > V0, the depth of the
well. Calculate the time taken by the particle to traverse the figure.

Solution: First, we note that the well is a schematic of the energies and we
are asked to use energies directly rather than forces. Secondly, the nature of
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a x

E
V0

a/2

3a/2-a/2

a/2

Figure 1.3: A finite square well potential of depth V0.

the forces is irrelevant — this is the advantage of an energy approach. The
diagram is not describing a dip in a physical landscape.

In the regions outside the well, the kinetic energy is the difference
between the total energy E and the potential energy V0

1
2 mv2 = E − V0. (1.3)

So the speed is given by v =

√

2(E−V0)
m . Inside the well, all the energy is

entirely kinetic and so the speed is v′ =
√

2E
m . Making use of the definition

of speed, v = ∆x/∆t→ ∆t = ∆x/v, which we can integrate, we find the total
time

t =

√

ma2

2

(

1√
E
+

1√
E − V0

)

. (1.4)

Exercise 1.3: A particle of mass m slides down, under gravity, a smooth ramp
which is inclined at angle θ to the horizontal. At the bottom, it is joined
smoothly to a similar ramp rising at the same angle θ to the horizontal to
form a V-shaped surface. If the particle slides smoothly around the join,
determine the period of oscillation, T, in terms of the initial horizontal
displacement x0 from the centre join. Note the shape of the potential well.

Hint: We see that the potential well appears as a sloping line similar to the
one along which the particle is constrained to move. It is only this linear
slope at angle θ to the horizontal, that happens to resemble the potential
energy graph of the same shape, which misleads us into thinking that we
can see the potential energy. The potential energy is a concept, represented
pictorially by a graph and the shape of the graph happens, in some cases,
to resemble the mechanical system.
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E =  V1 3 0

E =  V2 5 0

2V0

4V0

a

a/2

x

Figure 1.4: A stepped rectangular potential well

The distinction between the actual landscape (flat) and the potential is
clear in the case of a quadratic potential. See Fig. 3.4 on page 59.

Exercise 1.4: A particle moves in a potential V(x) = 1
2 qx2. If it has total energy

E = E0 give an expression for its velocity as a function of position v(x). What
is the amplitude of its motion?

Exercise 1.5: The potential energy of a particle of mass m as a function of its
position along the x axis is as shown in Fig. 1.4.
(a) Sketch a graph of the force versus position in the x direction which acts
on a particle moving in this potential well with its vertical steps. Why is
this potential unphysical?
(b) Sketch a more realistic force versus position curve for a particle in this
potential well. For a particle moving from x = 0 to x = 3a

2 , which way does
the force act on the particle? If the particle was moving in the opposite
direction, which way would the force be acting on the particle?

Hint: Take care over the physical meaning of the potential energy. It can look
misleadingly like the physical picture of a particle sliding off a high shelf,
down a very steep slope and then sliding along the floor, reflecting off the left
hand wall and then back up the slope. This is too literal an interpretation
since, for example, the potential change might be due to an electrostatic
effect rather than a gravitational one, and the time spent moving up or
down the slope is due to artificially putting in an extra vertical dimension in
a problem which is simply about motion in only one dimension. An example
of where there is literally motion vertically as well as horizontally, is that of
a frictionless bead threaded on a parabolic wire. The motion is not the same
as in the one-dimensional simple harmonic motion of Ex. 1.4. Although the
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potential energy is expressible in the form 1
2 qx2 due to the constraint of the

wire, the kinetic energy involves both the x and y variables.

Exercise 1.6: Consider again the particle in Ex. 1.5. If it has a total mechanical
energy E equal to 3V0, calculate the period for a complete oscillation. See
also Ex. 1.35.

Quantum mechanics in the world around us

Quantum effects are mostly manifested on a length scale much smaller than
we can observe with light and hence are not directly part of our everyday
world. Indeed we shall see that quantum mechanics takes us far from our
common experience. A particle can be in two places at the same time — it
must pass through at least two slits for interference to occur — and we shall
see the need to think of them as having a wave–particle duality of character.
But our world is dominated by the macroscopic effects of quanta. The con-
ductivity of metals and semiconductors is entirely dominated by quantum
effects and without them there would be no semiconductor age with com-
puters, consumer electronics, digital cameras, telecommunications, modern
medical equipment, or lasers with which to read digital discs. Atomic and
molecular physics, chemistry, superconductivity and superfluidity, electron
transfer in biology are all dominated by quantum mechanics. It is with
quantum mechanical waves, in an electron microscope, that we first saw
the atomic world. The ability of quantum particles to tunnel through clas-
sically forbidden regions is exploited in the scanning tunnelling microscope
to see individual atoms.

We shall explore such fundamental effects. For instance, we shall see
how quantum particles explore classically forbidden regions where they
have negative kinetic energy and should really not venture. We shall even
at the end quantise a model of electromagnetic standing waves and see
how photons and phonons arise. However fundamental the phenomena
we examine, and those that more advanced courses deal with, these effects
have all had a revolutionary influence in the last century through their
applications to technology, and have fashioned the world in which we live.
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1.2 Mathematical preliminaries for quantum mechanics

Probability, trigonometric and exponential functions, calculus, differential equa-

tions, plotting functions and qualitative solutions to transcendental equations

Mathematics suffuses all of physics. Indeed some of the most important
mathematics was developed to describe physical problems: for example
Newton’s description of gravitational attraction and motion required his
invention of calculus. If you are good at maths, and especially if you enjoy
using it (for instance in mechanics), then higher physics is probably for you
even if this is not yet clear to you from school physics. This book depends on
maths largely established by the end of the penultimate year at school. We
simply sketch what you have learned more thoroughly already, but might
not yet have practised much or used in real problems. So we assume expos-
ure to trigonometric and exponential functions, and to differentiation and
integration in calculus. We later introduce some more elaborate forms of
what you know already — for instance the extension of algebra to the ima-
ginary number i and its use in the exponential function, and differentiation
with respect to one variable while keeping another independent variables
constant (partial differentiation).

Probability

Wavefunctions generate probabilities, for instance that of finding a particle
in a particular position. We shall use probabilities throughout these notes,
taking averages, variances etc. Familiar averages over a discrete set of
outcomes i are written, for instance:

〈x〉 =
∑

i

xipi and 〈 f (x)〉 =
∑

i

f (xi)pi . (1.5)

Here 〈 〉 around a quantity means its average over the probabilities pi. This is
called the expectation value of the quantity. When outcomes are continuously
distributed, we replace the pi by a probability density (probability per unit
length) P(x) which gives a probability P(x)dx that an outcome falls in the
interval x to x+dx. Just as the discrete probabilities must add up to 1, so do
the continuous probabilities:

∑

i

pi = 1→
∫

P(x)dx = 1 . (1.6)

Such probabilities are said to be normalised. If the probability is not yet
normalised, we can still use it but we must divide our averages by

∫

P(x)dx,
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which in effect just performs the normalisation. In some problems it pays
to delay this normalisation process in the hope that it eventually cancels
between numerator and denominator. Averages (1.5) become

〈x〉 =
∫

xP(x)dx and 〈 f (x)〉 =
∫

f (x)P(x)dx . (1.7)

Exercise 1.7: The variance σ2 in the values of x is the average of the square
of the deviations of x from its mean, that is,

σ2 = 〈(x − 〈x〉)2〉 .

Prove the above agrees with the standard result σ2 = 〈x2〉 − 〈x〉2 for both
discrete and continuous x.

Essential functions for quantum mechanics

We shall see that a particle in a constant potential V(x) = V0, say, is represen-
ted by a wavefunction ψ ∝ sin(kx), where ∝ means “proportional to” (that
is, we have left off the constant of proportionality between ψ and sin(kx)).
The argument of the sine function, the combination kx, can be thought of
as an angle, say θ = kx. It must be dimensionless, as the argument for
all functions must be — this is a good physics check of algebra! Hence k

must have the dimensions of 1/length and we shall return to its meaning
in Chapter 2.3. ψ could equally be represented by cos(kx) with a change
of phase. We shall constantly use properties of trigonometric functions,
among the simplest being:

sin2 θ = 1 − cos2 θ (1.8)

cos(2θ) = 2 cos2 θ − 1 = 1 − 2 sin2 θ (1.9)

sin(2θ) = 2 sinθ cosθ (1.10)

tanθ = sinθ/ cosθ (1.11)

sin(θ + φ) = sin(θ) cos(φ) + sin(φ) cos(θ) (1.12)

cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ) (1.13)

sinθ + sinφ = 2 sin

(
θ + φ

2

)

cos

(
θ − φ

2

)

(1.14)

cosθ + cosφ = 2 cos

(

θ + φ

2

)

cos

(

θ − φ
2

)

(1.15)
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The double angle relations (1.9) and (1.10) are sometimes used in integrals
in rearranged form, e.g. sin2 θ = 1

2 (1−cos(2θ)). The addition formulae (1.14)
and (1.15) are used when adding waves together, and are simply derived
by adding and subtracting results like (1.12) and (1.12).

Exercise 1.8: Prove that tan 2θ = 2 tanθ/(1− tan2 θ) and further that tan 4θ =
4 tanθ(1 − tan2 θ)/(1 − 6 tan2 θ + tan4 θ).
If t = tan(θ/2), then show that sinθ = 2t/(1+ t2) and cosθ = (1− t2)/(1+ t2),
while tanθ = 2t/(1 − t2) is also a special form of the tan 2θ identity.
Prove that 1 + tan2 θ = sec2 θ where secθ = 1/ cosθ.
These relations are useful in integration by substitution.

In quantum mechanics it is possible to have negative kinetic energy,
something that is classically forbidden since clearly our familiar form is
T = p2/2m ≥ 0. If while T < 0 the potential is also constant, V(x) = V0,
then the wavefunction will have the exponential form ψ ∝ e−kx or ∝ ekx. We
shall find sin, cos and exp as wavefunctions whose oscillations in wells, and
decay away from wells, describe localised quantum mechanical particles.
See Chapt. 4, page 73, for hyperbolic functions, the equivalents of trig
functions but based upon ekx and e−kx.

The Gaussian function e−x2/2σ2
has a very special place in the whole of

physics. The form given is the standard form complete with the factor of
2 and its characteristic width σ for reasons made clear in Ex. 1.16. It is
the wavefunction for the quantum simple harmonic oscillator in its ground
state and is also the wavefunction with the minimal uncertainty. We return
to it at the end of Chapter 3.

Exercise 1.9: Plot e−x2/2σ2
for a range of positive and negative x. Label

important points on the x axis (including where the function is 1/e) and the
y axis. Pay special attention to x = 0. What are the slope and curvature (see
below) there? What is the effect on the graph of varying σ?

A little calculus — differentiation

The first derivative of the function f (x), denoted by d f/dx, is the slope of
f . Figure 1.5 shows the tangent to the curve f (x) and, in a triangle, how the
limit as δx → 0 of the ratio of the infinitesimal rise δ f to the increment δx
along the x axis gives tanθ and hence the slope of f (x) at a point. Vitally
important is the second derivative d2 f/dx2 since this leads to the quantum
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mechanical kinetic energy, T. It is the rate of change of the slope. Figure 1.5
shows regions of increasing/decreasing slopes and hence positive/negative
second derivatives. The second derivative is in effect the rate at which the

d d >0
2
f x/

2
d d <0

2
f x/

2

δf

δx

θ
f x( )

R
Figure 1.5: The gradient d f/dx =
tanθ of the function f (x). The
second derivative d2 f/dx2 is posit-
ive at the minimum where the slope
is increasing with x. The curvature,
1/R, derives from the circular arc, of
radius R, fitted to f (x) at x.

curve deviates from its local tangent. We shall also loosely refer to it as
the “curvature”. Figure 1.5 shows an arc of a circle of radius R fitted to a
minimal point, a point of zero slope where the second derivative is exactly
d2 f/dx2 = 1/R. Away from minima or maxima, but for not too great a slope,
the curvature is approximately the second derivative 4.

We require derivatives of the most common functions encountered in
quantum mechanics:

d
dx

sin(kx) = k cos(kx) (1.16)

d
dx

cos(kx) = −k sin(kx) (1.17)

d
dx

ekx = kekx. (1.18)

The latter is a definition of the exponential function — the function that is
its own derivative. To see this relation, we make the substitution u = kx

into Eq. (1.18). The derivatives become d
dx =

du
dx

d
du = k d

du and so we find that
d

du eu = eu.

Exercise 1.10: Show that d
dx

(tan x) = sec2 x.

Another common function in physics is the inverse function to the ex-
ponential — the natural logarithm. Consider the curve y = ex. The inverse
function is

x = ey. (1.19)

To see this we sketch both functions on the same axes, Fig. 1.6. We write the

4A precise definition for the curvature is 1/R = d2 f/dx2/(1 + (d f/dx)2)3/2 which takes
account of an increment δx not being the same as an increment of length along the curve.
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1

1

y x(  ) (a)

(b)

x

Figure 1.6: Plots of (a) y(x) = ex and (b) y(x) = ln(x). They are
reflections of each other in the line y = x. Thus (b) is x = ey.

solution to Eq. (1.19) as y = ln x. The derivative may be found by making
use of the result for derivatives of inverse functions, viz. dy

dx = 1/( dx
dy ). Since

dx
dy = ey = x we have

d
dx

ln x =
1
x
. (1.20)

Exercise 1.11: Plot sin(kx), cos(kx), and e±kx for positive and negative x, and
plot ln(kx) for positive x. Label important points (e.g. intersections with
axes, maxima and minima) on the x and y axes. What happens to these
points and the graph if you change k? Revise elementary properties of
the exponential and logarithmic functions. What are (ex)2, ex/ey, a ln x and
ln x + ln y?

We often need to differentiate the product of two functions:

d
dx

(
g(x).h(x)

)
=

dg(x)

dx
.h(x) + g(x).

dh(x)
dx

, (1.21)

which is the product rule.
Sometimes we shall differentiate a function of a function for which one

requires the chain rule.
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Exercise 1.12: (a) Use the chain rule to show that d
dx e−x2/2σ2

= − x
σ2 e−x2/2σ2

.
Plot the derivative of the Gaussian on the same graph as the Gaussian plot-
ted in Ex. 1.9. This result helps in the integration by parts in Ex. 1.16.
(b) What is the derivative with respect to x of sin( 1

2 cx2)?

Solution: The chain rule allows us to differentiate a function of a function,
that is d

dx f (g(x)). Differentiate the function f (g) with respect to its argu-
ment g, and then differentiate g with respect to its argument x, thus getting
d

dx f (g(x)) = d f

dg ·
dg

dx , both parts of the right hand side being functions ulti-

mately of x. In (a) the function f is the exponential eg, and g(x) = −x2/2σ2,
whence d f/dg = f and dg/dx = −x/σ2 and we obtain the desired result.
Plot the graph. Part (b) is similar.

A little calculus — integration

Integration is the reverse operation to differentiation. Geometrically, it gives
the area, A, under a curve between the points x = a and b in Fig. 1.7. We write

the integral as A(a, b) =
∫ b

a
f (x)dx and can think of it as the limit of the sum

(Σ) of infinitesimal component areas. A(a, b) can be divided into a very large
number of very thin rectangular slices of width dx and height f (x). Each
element in the sum A =

∑b
a f (x)dx is one of the infinitesimal areas shown

in Fig. 1.7. It is clear that since areas add, then
∫ b

a
f (x)dx +

∫ c

b
f (x)dx =

f x(  )

xa b c dx

A a b( , )

area=
f x x(  ).d Figure 1.7: Integration gives the

area under a curve of the func-
tion. Integrals can be added, thus
A(a, b) + A(b, c) = A(a, c).

∫ c

a
f (x)dx. These are examples of definite integrals, that is with definite

limits specified. Where the limits are not given these integrals are termed
indefinite. Commonly, there is no distinction made between independent
and dummy variables. For example,

∫

exdx = ex has x as the same variable
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for both sides. We shall not abuse this notation. For instance,

∫ x

sin(kz)dz = −1
k

cos(kx) + c1 (1.22)
∫ x

cos(kz)dz =
1
k

sin(kx) + c2 (1.23)
∫ x

ekzdz =
1
k

ekx + c3. (1.24)

Note that an arbitrary constant (c1, c2, c3 in the above) then arises in each in-
tegration. It can be thought of related to the starting point of the integration
which has been left indefinite. To reconcile the absent lower limit to the ap-
pearance of an arbitrary constant, consider as an example

∫ x

a
ezdz = ex − ea.

If a is an arbitrary constant, then so is the constant ea. Upon differentiation
these constants are removed. The variable of integration, z, is a dummy
variable — any symbol can be used. This is identical to the dummy index
used in discrete sums. For instance, the sum

∑

i xi is the same as
∑

j x j.
The only difference is that z in the former example is a continuous variable
whereas i and j are discrete.

Exercise 1.13: Confirm by differentiation of the right hand sides of Eqs. (1.22–
1.24) that, in these cases at least, differentiation is indeed the reverse process
from integration; that is, d

dx

∫ x
f (z)dz = f (x) in the above examples.

The result is generally true; take I(x+dx) =
∫ x+dx

f (z)dz and subtract from

it I(x) =
∫ x

f (z)dz. Use the ideas in Fig. 1.7 of adding or subtracting integrals

to construct dI
dx = lim

dx→0

I(x+dx)−I(x)
dx . The numerator is clearly A(x, x+dx) which,

from the definition of integration, is in this limit f (x).dx. Putting this result
in and cancelling the dx factors top and bottom, one obtains dI

dx = f (x).

Integration by parts

Integration by parts is frequently useful in quantum mechanics. It can
be thought of as the reverse of differentiation of a product. Integrating
Eq. (1.21) gives

∫ b

a

d
dx

[

g(x).h(x)
]

dx =

∫ b

a

dg(x)

dx
.h(x)dx +

∫ b

a

g(x).
dh(x)

dx
dx. (1.25)
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Rearranging we find that
∫ b

a

g(x).
dh(x)

dx
dx =

[
g(x).h(x)

]b
a −

∫ b

a

dg(x)
dx

.h(x)dx . (1.26)

Notice that h on the right hand side can be regarded as the indefinite integral
of the dh/dx factor on the left hand side, that is h(x) =

∫ x dh
dz dz. For clarity

rewriting g as u(x) and dh/dx as v(x), one can rewrite in a form easier to
remember and apply:

b∫

a

u(x).v(x)dx =

[

u(x).

(∫ x

v(z)dz

)]b

a

−
b∫

a

(du

dx

)

.

(∫ x

v(z)dz

)

dx . (1.27)

Be fluent with the use of the result. Our experience shows that it is best to
remember it for use directly along the lines of

“to integrate a product (uv), integrate one part (v) and evaluate
this integral times the other function between the given limits,
that is giving the first term on the right. Take away the integral of
[(the integral already done)×(the derivative of the other factor)],
giving the second term on the right.”

Judiciously choose the easier of u and v to integrate. For instance,

∞∫

0

xe−kxdx =
[

−x
1
k

e−kx
]∞

0
+

∞∫

0

1
k

e−kxdx =
1
k2
, (1.28)

where u(x) = x and v(x) = e−kx, with du/dx = 1 and
∫ x

v(z)dz = − 1
k e−kx. The

first term in the middle of (1.28) is zero since it vanishes at both limits, and
the second term is 1/k2 on doing the exponential integral a second time.

Exercise 1.14: Integrate
∫ ∞

0
xne−xdx once by parts. For n an integer, the result

suggests repetition until a final result. What well-known function then
results?

Exercise 1.15: Integrate
∫ π

2

0
x2 sin x dx and

∫ π
2

0
x2 cos x dx.

The split into u and v can require delicacy! For example, the integral
∫ ∞
−∞ x2e−x2/2σ2

dx can be written as
∫

u.vdx =
∫

(−σ2x).
(

− x
σ2 e−x2/2σ2

)

dx. Identi-

fying v(x) as the second factor, the integral
∫ x

v(z)dz = e−x2/2σ2
is easy; see
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in Ex. 1.12 the differentiation of this answer back to the starting point, and
du/dx = −σ2 is also easy. The integral has been reduced to another one
which does not have a simple answer, but that itself is not necessarily a
difficulty — a problem delayed is sometimes a problem solved!

Exercise 1.16: If P(x) ∝ e−x2/2σ2
, show that the average 〈x2〉 = σ2.

Hint: The average is the integral over x2 times e−x2/2σ2
, divided by the

integral of e−x2/2σ2
(why?). The integral of the Gaussian by itself is rather

difficult, but the numerator can be done by parts and then much of it cancels
with the denominator. So avoiding hard integrals is a common technique
in quantum mechanics.

This Gaussian result is found widely physics and is worth remembering:

“From a Gaussian probability written in its standard form P(x) ∝
e−x2/2σ2

, one reads off the mean square value of x as being σ2, that
is, the number appearing in the denominator of the exponent,
taking care to re-arrange slightly if the required factor of two is
not directly apparent.”

What would be the mean square value of x be if the probability were P(x) ∝
e−2x2/b2

? Answer: 〈x2〉 = b2/4.
The reader eager to get on to quantum mechanics could skip the next

problems, quickly revise differential equations, and jump to Chapter 2. It
will be obvious when it is advantageous to return to this exercise.

Exercise 1.17: Evaluate N =
∫ L

0
sin2(πx

L )dx and 1
N

∫ L

0
x2 sin2(πx

L )dx.

Hint: Use a double angle result and integration by parts. N = L/2, a result
that is rather general for the integration of squares of sine and cosine through
intervals defined as being between various of their nodes. After studying
quantum wells, you might like to return to the choice π/L for the coefficient
of x in the argument of sine. The second result is L2

(
1
3 − 1

2π2

)

. Given your

result for N, then 1
N sin2(πx/L) would be an acceptable probability P(x).

What is 〈x〉? What is the variance of x?

Exercise 1.18: Integrate the functions ln x, ln x
x2 and ln(sin x)

cos2 x
.
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Integration by substitution

In some integrals
∫

dx f (x) it is advantageous to substitute trig functions
for x, for instance x → sinθ or cosθ, or sometimes x → sin2 θ or cos2 θ,
depending on the form of f (x) to be integrated. Remember that as well as
changing the x where ever it appears in f , one has to change the differential.
For instance when x = sin2 θ is chosen as a substitution, the dx becomes
dθ 2 sinθ cosθ. Sometimes to eliminate trig functions in integrals

∫

dφ f (φ),
one can use t = tan(φ/2) where dt = 1

2 dφ sec2(φ/2).

Exercise 1.19: Show that
∫ z dx√

1−x2
= sin−1 z, and

∫ z dx
1+x2 = tan−1 z. Show

that
∫ θ dφ

cosφ = ln
(

1+tanθ/2
1−tanθ/2

)

. Thence show that
∫ z dx√

1+x2
= ln

(

z+
√

1+z2−1
z−
√

1+z2+1

)

. See

Ex. 4.10 for a method for related integrals using hyperbolic functions.

Differential equations

Most of physics involves differential equations and they certainly underpin
quantum mechanics. Such equations involve the derivatives of functions as
well or instead of the usual familiar algebraic operators in simple equations
such as powers. The first differential equations we meet are those of free
motion, or motion with constant acceleration, such as free fall with g. Thus
force =mass times acceleration is the differential equation mdv/dt = mg. It
is easily integrated once with respect to time t: the right hand side is constant
in time and gives mgt. The left hand side has the derivative nullified by
integration to give mv + constant. Cancelling the masses, gives v = v0 + gt.
We have taken the initial speed (at t = 0) as v0, that is, we have fixed the
constant of integration by using an initial condition. More generally, these
are termed boundary conditions. Rewriting the answer as dz/dt = v0 + gt,
where z is the distance fallen down, we can integrate both sides again to
yield z = v0t+ 1

2 gt2, where we have taken the next constant of integration, the
position z0 at t = 0, to be zero. This familiar result of kinematics is actually
the result of solving a differential equation with a second order derivative
since we could have written our starting equation as d2z/dt2 = g.

Exercise 1.20: For the mass under free fall described above, sketch on the
same axes the acceleration dv

dt , velocity v and displacement z as a function
of time.
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Simple harmonic motion

Ubiquitous throughout physics is simple harmonic motion (SHM) or the
simple harmonic oscillator (SHO) which for instance in dynamics results
when a particle of mass m is acted on by a spring exerting a force −qz where
now z denotes the particle’s displacement from the origin. The correspond-
ing potential giving rise to the force is harmonic — see the discussion of
potentials on page 5. The − sign indicates that the force is restoring, that
is, opposite in direction to the displacement, and q is Hooke’s constant.
Newton’s second law is f = ma with the acceleration a = dv

dt being the time
derivative of the velocity, that is, of v = dz

dt . Using the Hookean force, one
obtains the equation of motion

m
d2z

dt2
= −qz or

d2z

dt2
= −ω2z , (1.29)

where the angular frequency, ω, will be discussed below and is clearly
ω =

√

q/m. This equation describes oscillations of the particle here, but in
a general form also those of an electric field in electromagnetic radiation,
or the quantum fields in quantum electrodynamics. Thus differential equa-
tions differ from the usual kinds of algebraic equations since they involve
derivatives of the function. The highest derivative in (1.29) is a second
derivative and so (1.29) is called a second order (ordinary) differential equa-
tion. The “ordinary” means there is only one independent variable, t here.
We shall later meet cases of more than one independent variable which give
rise to “partial” differential equations.

An honourable and perfectly legitimate method of solving differential
equations is to guess a solution and try it out. Guesses can often be very
well informed and hence this is not entirely magic!

Exercise 1.21: Inspect Eqs. (1.16–1.18) and differentiate each side again. Con-
firm that for f = sin(kx) and cos(kx), and separately for f = e±kx, one has
respectively the similar results:

d2 f

dx2
= −k2 f and

d2 f

dx2
= k2 f . (1.30)

In a mysterious way ekx is like sin(kx) or cos(kx), but with k2 replaced
by −k2. This turns out to be true, but there is the little matter of a squared
number becoming negative! (52 = 25 and (−5)2 = 25 too; how would one get
a result of −25?) We treat imaginary and complex numbers in Chapter 4.1
which could also be read now, if desired.
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Considering time t rather than x as the independent variable, one can
confirm that two solutions for SHM (Eq. (1.29)) are

z(t) = zs sin(ωt) , z(t) = zc cos(ωt). (1.31)

Since sine and cosine repeat when ωt = 2π, that is, after a period t = T =
2π/ω, then rearrangement shows that ω = 2π/T ≡ 2πν — the angular
frequency where ν = 1/T is the usual frequency. The amplitudes zs and zc

of oscillation are arbitrary and indeed the general solution would be z(t) =
zs sin(ωt) + zc cos(ωt), which is an arbitrary combination of the oscillatory
components differing in phase by π/2 or 90 degrees.

We have seen in the second order differential equation (1.29), a constant
is introduced every time we integrate. Two integrations and thus two
constants are required to get a general solution. How do we fix these
constants? “Boundary conditions”, in this case two, and in general as many
as the order of the equation, are required to fully solve differential equations.
Here for instance, at t = 0 we have z(t = 0) = 0 and dz/dt = v0 (the particle
is initially at the origin with velocity v0). The first condition demands that
zc = 0 (recall what sin(0) and cos(0) are). The second condition gives

v0 =
dz

dt

∣
∣
∣
∣
∣
t=0
= ωzs cos(ωt)|t=0 = ωzs ,

that is zs = v0/ω. See also the simple example above of integrating the differ-
ential equation of free fall. Note that the period (T = 2π/ω) is independent
of the amplitude: only the ratio between the inertia factor (the mass) and
the elasticity factor (the spring constant) matters. This is generally not true.
See Ex. 1.3 where the period increases with amplitude and Ex. 1.36 for more
exotic behaviour. Consult Sect. 3.2 for further discussion of classical SHM.

x

mq

Figure 1.8: A mass on a light spring.

Exercise 1.22: A mass m, attached to a light spring of constant q, slides on a
horizontal surface of negligible friction, as shown in Figure 1.8. The mass is
displaced through a distance x0 from the equilibrium position and released.
Write down Newton’s 2nd law as applied to the displaced mass.
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A clock is started at some later time and the dependence of the displace-
ment on time is given by x(t) = x0 sin(ω t + φ). Act on the time dependent
displacement x(t) with the operator d2

dt2 . You will see that the same function
is obtained up to a multiplicative constant. Obtain the constant and relate
it to the result of Newton’s 2nd Law.

Sketch a graph of the system’s potential energy versus displacement.

Exponentially decaying motion

If friction dominates, that is, if there is no or insufficient restoring force, we
have exponential instead of sinusoidal motion.

Exercise 1.23: A block sliding on a surface covered by a thin layer of oil
suffers a retarding force proportional to its velocity, f = −µv, where µ is
a constant. Show that dv/dt = −(µ/m)v and solve the equation subject to
v(t = 0) = v0. What is the displacement as a function of time? Sketch the
block’s displacement, velocity and acceleration as a function of time on the
same axes.

Solution: Applying Newton II gives m dv
dt = −µv. This is a first order separ-

able differential equation. The solution can be found by either comparison
with radioactive decay or by separating variables. Performing the latter
yields dv

v = −
µ
m dt. Integrating and inserting the boundary condition gives

∫ v

v0

dv

v
= −

µ

m

∫ t

0
dt (1.32)

ln
(

v

v0

)

= −
µ

m
t (1.33)

v = v0e−
µ
m t. (1.34)

Note that there is only one boundary condition since it is a first order dif-
ferential equation. Check that this is indeed a solution to the differential
equation (and the initial condition) by direct substitution. A further integ-
ration produces the displacement mv0

µ

(

1 − e−
µ
m t
)

at time t.
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Exercise 1.24: A model for the downward speed v(t) at time t of a small
particle sedimenting in a viscous fluid is given by

m
dv

dt
= mg − kv. (1.35)

Explain the physical origin of each of the terms. Solve the differential
equation (1.35) given the initial speed is zero. What is the terminal speed?

We return to very general and important aspects of differential equations
in Sect. 2.3 on Sturm–Liouville theory.

Interference of waves

We have seen that the general solution to the SHM equation (1.29) is z(t) =
zs sin(ωt) + zc cos(ωt). That is, any sum or linear combination of z(t) =
sin(ωt) and z(t) = cos(ωt) is also a solution. This is a general property of
linear differential equations. Linear means that there are no powers in the
derivatives or the function z. The differential equation governing waves is
also linear in the same way. And thus waves can add or superpose to give
other composite waves that are also solutions of the same equation.

When we superpose two waves, in some places the disturbances add,
in other places they subtract, depending on the relative phase of the two
quantities being added. The phase might depend on position such as in the
two slit experiment. Here we have two separated but identical sources of
waves which travel to an observation screen. At a general point on the screen
the distances travelled by the two sets of waves will be different. Let us take
two extremal examples. First, if the path difference between waves from the
double slits to a given observation point is exactly a wavelength, the waves
add in phase and give a maximum of intensity (known as constructive
interference). Conversely, if the path difference is a half wavelength, one
has destructive interference and thus a node, a position of zero intensity,
on the observation screen. This process of wave interference occurs for any
waves travelling in any direction through the same region of space. See the
2-slit experiment of Fig. 4.3 on page 76. Another example is standing waves
which are produced by the interference of two identical counterpropagating
waves:

Exercise 1.25: Show that the waves sin(kx+ φ/2) and sin(kx−φ/2), differing
in phase by φ, add to give a resultant wave 2 sin(kx) cos(φ/2). Consider the



24 CHAPTER 1. PRELIMINARIES

cases of being in phase (φ = 0) and in anti-phase (φ = π) when these two
waves interfere.

Waves on a stretched string

Consider a string under tension T and of mass per unit length µ. It is
anchored at x = 0 and x = a; see Fig. 1.9. For small sideways displacements

Figure 1.9: A snapshot of standing waves
on a stretched string at a particular time.
For snapshots of the string at other times,
see Fig. 5.6. The transverse displacement is
ψ(x).

ψ(x) at the position x the length changes little and the tension remains T.
One can show that the envelope ψ(x) of standing or stationary waves obeys
the equation

d2ψ

dx2
= −

µ

T
ω2ψ. (1.36)

See Sect. 5.3 for a derivation of the full motion, of which this is one limit.
For standing sound waves in a tube, ψ(x) would be the pressure that varies
with position x along the tube. The wave speed is c =

√

T/µ and ω = 2πν
connects the angular and conventional frequencies, ω and ν. Thus in the
above equation

ω

c
=

2πν
c
=

2π
λ
= k, (1.37)

where these rearrangements employ νλ = c with λ the wavelength. The
final definition k = 2π/λ introduces the wavevector5 that is so ubiquitous
in quantum mechanics and optics.

Using k, the standing wave equation becomes

d2ψ

dx2
= −k2ψ, (1.38)

which is the form of Eq. (1.30). Its solutions are sin(kx) and cos(kx). Figure 1.9
shows that sinceψ(0) = 0 we have to discard the cos(kx) solutions, since they
are non-zero at x = 0, in favour of sin(kx) solutions that naturally vanish

5k is here manifestly a scalar, not a vector. See Fig. 5.4, and the discussion around it, as to
why k is in fact generally a vector. But the usage “vector" for its magnitude too is quite general.
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at x = 0. Equally in Fig. 1.9, to ensure ψ(x = a) = 0, it is necessary for an
integer number of half wavelengths to be fitted between x = 0 and x = a. So

n · λ
2
= a ⇒ λ =

2a

n

whence

k =
2π
λ
=

nπ

a
. (1.39)

Only discrete choices of λ, or equivalently k, corresponding to integer n
are permitted. Only certain waves are possible. In fitting waves into this
interval with its boundary conditions, we have our first encounter with
what we later see is quantisation!

Qualitative understanding of functions

We shall meet equations we cannot solve exactly. For instance, they can
involve transcendental functions6 such as trigonometric and exponential
functions. However, a deep understanding of the behaviour of quantum
systems emerges from plotting the functions, as well as from using calculus
and a knowledge of their asymptotes and zeros. For instance Fig. 1.10 shows
the two functions y =

√
x and y = tan(x2). Explain the behaviour of each

x

f x( )

2

2

−2

−2

−1

−1

1

1

Figure 1.10: A plot of the functions
√

x and tan(x2).

function at important points such as the origin and at nodes (zeros) of the
somewhat unusual tangent function. Why at one node is the slope zero,
and why is it finite at others? Where are the nodes in general? Where the
two functions cross are the solutions of the equation tan(x2) =

√
x.

6That is, functions that return values that can be transcendental numbers. Such numbers
are not roots of polynomial equations, as algebraic numbers (both rational and irrational) are.
For example π and e are transcendentals.
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Exercise 1.26: Plot the functions y =
√

x0 − x and tan(
√

x) on the same graph
for positive x, taking the former function up to x0 (a constant). Identify the
zeros of each function and give their locations. What is the behaviour of the
functions around these zeros, in particular their slopes there? How many
solutions does the equation tan(

√
x) =

√
x0 − x possess? What about the

equation tan(
√

x) = −√x0 − x ? Precise location of the solutions requires
numerics. Discuss their approximate locations. Similar analysis will be
important for quantum wells of finite depth; see Sect. 3.1.

Hint: It might be helpful to differentiate or use the approximation that
tan x ≈ x for small x.

We later solve a slightly more complicated version of this problem to
find the characteristic states of a quantum particle found in a finite square
well; see Eq. (3.8).

A little calculus is sometimes helpful in analysing equations. Another
transcendental equation is ex = kx; see Fig. 1.11.

x

f x( )

2

3

5

7

1

1

Figure 1.11: Plots of ex, and of kx for various values of k.

Exercise 1.27: For what values of k do there exist solutions of the equation
ex = kx? What is the solution at the k, say kc, where solutions first appear?

Hint: Consider the case where the line first touches the exponential. What
two conditions are required there? Solve them simultaneously.

Exercise 1.28: Consider the equation ex = 1
2 ax2, for a > 0. For what ranges of

a are there 1, 2, or 3 solutions to this equation?

It is very helpful to know the power series expansions of functions for
small values of their arguments, and how in general to expand functions
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about an arbitrary point in their range. To get a first approximation recall
that the derivative is the limiting ratio as δx→ 0

dy

dx
≃
δy

δx
≃

y(x0 + δx) − y(x0)

δx
. (1.40)

Rearranging we find that

y(x0 + δx) ≃ y(x0) + δx ·
dy

dx

∣
∣
∣
∣
∣
x0

, (1.41)

so we have some knowledge of y at another point (x0 + δx) if we know y(x0)
and the first derivative at x0. We shall use a rearrangement of the first of
Eq. (1.41) to get the difference of the values of a function evaluated at two
different points: y(x0 + δx) − y(x0) ≃ δx · dy

dx .
Repeated application of this procedure gives us better knowledge further

away, at the expense of needing higher derivatives. So we may write in
terms of derivatives evaluated at x = x0, the Taylor expansion

y(x0 + δx) = y(x0) + δx
dy

dx
+

(δx)2

2!
d2y

dx2
+

(δx)3

3!
d3y

dx3
+ . . . (1.42)

For instance, some familiar functions expanded about x0 = 0 while calling
δx simply x:

sin(x) = x − x3

3!
+

x5

5!
− . . . (1.43)

cos(x) = 1 − x2

2!
+

x4

4!
+ . . . (1.44)

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (1.45)

1
1 − x

= 1 + x + x2 + . . . for |x| < 1 (1.46)

tan x = x +
x3

3
+

2x5

15
+ . . . (1.47)

ln(1 + x) = x − 1
2 x2 + 1

3 x3 + . . . for |x| < 1. (1.48)

Exercise 1.29: Confirm the expansions (1 + x)n = 1 + nx +
n(n−1)

2! x2 + · · · + xn,
terminating at xn for positive integer n, and tan(x) = x + x3/3 + . . . .

Hint: Recall that tan(x) = sin(x)/ cos(x) and expand the denominator up into
the numerator using (1.46) with a more complicated “x”.
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Exercise 1.30: For each of the functions in Eqns. (1.43–1.45), sketch the func-
tion, the separate terms in the approximation, and finally the sum of those
terms on the same diagram.

Hint: Note how each successive term builds up to form a better approxim-
ation to the true function.

Vectors

In Sect. 1.2 and Ex. 1.20, we analysed the downwards motion of a falling
particle. Suppose we had instead launched the mass horizontally with speed
v0 at time t = 0. What is the subsequent motion of the mass? The horizontal
and vertical motions are independent from each other. The vertical motion
is as described previously. Since we have assumed no frictional forces, the
horizontal speed remains constant.

Exercise 1.31: Show that the motion of the above mass is parabolic with
equation y = (g/2v2

0)x2, adopting the coordinates of Fig. 1.12.

The motion of the projectile is decoupled into horizontal and vertical
directions, Newton’s laws of course applying in both directions. However,
we need not have chosen horizontal and vertical axes for Newton’s laws to
apply. We expect that the laws of physics are independent of our particular
choice of co-ordinates. The mathematical way of expressing such laws is in
terms of vectors.

Figure 1.12: A vector v has magnitude and direc-
tion. It has an identity independent of a particular
representation. It can be resolved into the x and y
directions of a particular coordinate system.

x

v

y

φ
θ

A scalar quantity, such as the mass of the projectile, can be represented
by a single number. A vector, such as velocity, by contrast possesses both
magnitude and direction. The mass travels in a particular direction at a
certain rate. We represent vectors in boldface or they are underlined in
handwriting. Referred to a particular co-ordinate system, say, the usual x
and y axes, the vector v of length v, has vx and vy components in x and y

directions respectively,

vx = v cosθ vy = v cosφ, (1.49)
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where angles θ and φ are between v and the x and y axes respectively (see
Fig. 1.12). Note that φ = π

2 − θ. Written in components explicitly, v can be
written as a row or column or numbers. Hence, we may write v = (vx, vy)

or v =
(

vx
vy

)

. Squaring and adding the components, we find that

v2
x + v2

y = v2 cos2 θ + v2 cos2 φ

= v2(cos2 θ + sin2 θ) = v2
(1.50)

is independent of angle θ and thus of co-ordinate choice. Rotating our
choice of axes does not change the length v of the vector; but it does change
the components. It is the same object from different viewpoints.

More generally, the scalar product of vectors a and b, defined by

a · b = axbx + ayby + azbz, (1.51)

is a co-ordinate independent scalar quantity. If b = a, then a · a = |a|2 = a2

is called the modulus squared of vector a. The modulus is the length of the
vector. An important scalar for our later work is that of the particle’s kinetic
energy T = 1

2 mv ·v = 1
2 m(v2

x+v2
y+v2

z). The meaning of this expression is that
the kinetic energies due to motion in the different perpendicular directions
add to give the total.

Exercise 1.32: Write the kinetic energy in terms of the components of the
momentum p.

Exercise 1.33: By considering c = a + b or otherwise, show that a · b is
independent of the choice of co-ordinates.

Solution: Use the result that |a|2, |b|2 and |c|2 are invariant upon co-ordinate
rotation together with the definition of scalar product, in particular applying
it to c · c.

Exercise 1.34: By appropriate choice of axes or otherwise, show that

a · b = ab cosθ, (1.52)

where θ ∈ [0, π) is the angle between vectors a and b.

If a · b = 0 then a and b are perpendicular or orthogonal to each other.
In general, the trigonometric factor cosθ shows the dot product has the
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meaning of the projection of b along a times the length of a or equivalently
vice verse. We use this in analysing 2-D waves in Sect. 5.3.

If the unit vectors7 in the x, y and z directions are i, j and k respectively,
then a vector can be written as

v = vxi + vy j + vzk

= (v · i)i + (v · j) j + (v · k)k,
(1.53)

where we have made use of the result of Ex. 1.34. This way of expressing
the vector is called resolving or expanding into basis vectors.

1.3 Summary

To gain a deep understanding of physics, including quantum mechanics,
one requires mathematical fluency. We have revised the essentials of prob-
ability, algebra and calculus, and derived results which will be used in later
chapters, particularly those of the harmonic oscillator and waves on a string.
More mathematical material and practice is in Chapter 4.1 where i, that is√
−1, is introduced.

Quantum mechanics is founded on different physical concepts from
classical physics. Central is the idea of a wavefunction from which we can
derive the probability of finding a particle in a given position.

Adopting a theory based on probability, we found that it is impossible to
determine simultaneously the position and momentum of particles beyond
a certain accuracy (Heisenberg’s uncertainty principle). We shall explore the
ramifications of this in later chapters. To describe the motion of quantum
particles, we use the idea of potential energy rather than forces. The classical
potential problems we give are important practice for this new approach.

1.4 Additional problems

Exercise 1.35: A particle of energy E2 = 5V0 approaches the potential of
Fig. 1.4. How long does it take to travel from −a to +2a?

Exercise 1.36: A particle of mass m is constrained to slide along a smooth
wire lying along the x axis, as shown in Figure 1.13. The particle is attached

7Conventionally in vector analysis, these are denoted with a hat above the vector, e.g. î.
However, we shall reserve the hat for use with quantum mechanical operators.
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x

m
q

l
l0

Figure 1.13: A constrained mass on a spring

to a spring of natural length l0 and spring constant q which has its other end
fixed at x = 0, y = l0.
(a) Obtain an expression for the force exerted on m in the x direction.
(b) For small displacements (x ≪ l0), how does the force depend upon
displacement x?
(c) The potential U(x) depends upon x in the form of U ≃ Axn for small x.
What are the values of n and A in terms of the constants given?
(d) Find the exact potential.
(e) By sketching a graph of the potential energy, suggest qualitatively how
the period of oscillation of the object will depend on the amplitude.
(f) For n = 4 and amplitude x0, show that the period is

τ = 4
1
x0

√

m

2A

∫ 1

0

du√
1 − u4

.

Exercise 1.37: An ideal spring obeying a linear force-extension law will store
elastic potential energy when stretched or compressed. A real spring will
often have other (smaller) force-extension terms included, and can be used
as a model for the attractive and repulsive forces in other systems: Add
to the linear, attractive force a quadratic repulsive term, q2x2, the restoring
force eventually becoming repulsive at large enough x values.

F(x) = −q1x + q2x2.

(a) Calculate the potential energy, U(x), stored in the spring for a displace-
ment x. Take U = 0 at x = 0.
(b) It is found that the stored energy for x = −a is twice the stored energy
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for x = +a. What is q2 in terms of q1 and a?
(c) Sketch the potential energy diagram for the spring.
(d) Consider a particle attached to the end of this spring. At what amplitude
of motion in the x > 0 region does the particle cease to oscillate? At what
x < 0 would we release the particle from rest in order to start seeing this
failure to oscillate? Describe the motion.

Exercise 1.38: A particle with energy E incident from x < 0 on a potential
ramp of the form V(x) = 0 for x < 0 and V(x) = V0x/d for x ∈ (0, d) and
V = V0 for x > d. For E < V0 give the x value of the classical turning point,
xctp, where the particle briefly stops8.
Show that the time taken to travel from x = 0 to a point x0 on the ramp
(x0 ≤ xctp) is t0 ∝ (1 − cosθ0), where cosθ0 = (1 − V0x0

Ed )1/2. Give the constant
of proportionality. What is the time taken to reach the classical turning
point?
Hint: the form of the answer is a steer to the calculus involved.
What is the form of the force implied by this potential? Solve this elementary
problem instead by integration of Newton’s Second Law and show that the
answer is the same as above.

Exercise 1.39: Consider a particle with energy E incident from x < 0 on a
potential V(x) = 0 for x < 0 and V(x) = 1

2 V0(x/d)2 for x > 0. Give the
location, xctp, of the classical turning point.
Show that the time taken to reach a position 0 < x0 ≤ xctp from x = 0

is t0 ∝ sin−1
(√

V0
2E

x0
d

)

, and give the constant of proportionality. What is

important about the E-dependence of the time taken to reach the classical
turning point? Evaluate and interpret this time. Ex. 4.36 addresses the
motion in this potential when it is inverted.
Repeat this analysis using a fundamental result of SHM, that is x = A sin(ωt)
where ω =

√

q/m is the angular frequency associated with a harmonic
potential (here q = V0/d2) and where A is the amplitude of oscillation. Fix
A from your knowledge of v = dx/dt at t = 0, x = 0.
[Recognising that motion can be a section of a full SHM, and using the
simplicity of SHM results, can be a quick way to solve a problem.]

8A classical, i.e. non quantum, particle cannot proceed further than this point, hence the
name.
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Exercise 1.40: A particle of energy E is incident from x < 0, where V(x) = 0,
on a potential ramp V(x) = 1

2 qx2 for x = 0 to x = a, and V(x ≥ a) = 1
2 qa2 = V0,

a constant thereafter. For E > V0 calculate the time taken to reach x = b,
where b > a.

Exercise 1.41: A model for a parachutist’s downward speed v(t) at time t in
free fall after jumping out is given by

m
dv

dt
= mg − cv2. (1.54)

Explain the physical origin of each of the terms. What is her terminal speed?
Solve the differential equation (1.54), given her initial downward speed is
zero when she jumps out.

Exercise 1.42: Functions ψ0 and ψ1 describing the first two quantum states
of the harmonic oscillator are ψ0(u) = A0e−u2/2 and ψ1(u) = A12ue−u2/2. The
normalisations A0 and A1 ensure that the probability density p(x) = ψ2(x)
satisfies

∫ ∞
−∞ ψ

2du = 1. The variable u is related to the displacement, x, from

the minimum of the quadratic potential; see page 62. Show that A1 = A0/
√

2.
Do not evaluate A0, but give a value for the particle’s mean square position
when in the second quantum state: 〈u2〉 =

∫ ∞
−∞ u2ψ2

1du.

Exercise 1.43: Show that
∫ a

0
x sin2(kx)dx = a2

4

[

1 − sin(2ka)
ka +

sin2(ka)
(ka)2

]

.


